A ciência precisa de canais de comunicação claros para cortar o ruído, para que a pesquisa tenha algum impacto. O CIFOR-ICRAF é tão apaixonado por compartilhar nosso conhecimento quanto por gerá-lo.
Découvrez les évènements passés et à venir dans le monde entier et en ligne, qu’ils soient organisés par le CIFOR-ICRAF ou auxquels participent nos chercheurs.
Jelajahi acara-acara mendatang dan yang telah lalu di lintas global dan daring, baik itu diselenggarakan oleh CIFOR-ICRAF atau dihadiri para peneliti kami.
Pour que la recherche ait un impact, la science a besoin de canaux de communication clairs pour aller droit au but. CIFOR-ICRAF est aussi passionné par le partage de ses connaissances que par leur production.
Para que la investigación pueda generar algún impacto, los conocimientos científicos requieren de canales de comunicación claros. En CIFOR-ICRAF, compartir nuestros conocimientos nos apasiona tanto como generarlos.
Ilmu pengetahuan membutuhkan saluran komunikasi yang jelas untuk mencapai tujuan, jika ingin dampaknya terlihat. CIFOR-ICRAF sangat bersemangat untuk berbagi pengetahuan sembari menghasilkan pengetahuan itu sendiri.
CIFOR–ICRAF achieves science-driven impact. We conduct innovative research, strengthen
partners’ capacity and actively engage in dialogue with all stakeholders, bringing the latest insights on
forests, trees, landscapes and people to global decision making.
CIFOR–ICRAF publishes over 750 publications every year on agroforestry, forests and climate change, landscape restoration, rights, forest policy and much more – in multiple languages.
Explore our knowledge
Browse CIFOR–ICRAF’s published research in a wide range of formats, all of which are available for free online.
Science needs clear communication channels to cut through the noise, if research is to have any impact. CIFOR-ICRAF is as passionate about sharing our knowledge as we are in generating it.
CIFOR–ICRAF addresses local challenges and opportunities while providing solutions to global problems for forests,
landscapes, people and the planet.
We deliver actionable evidence and solutions to transform how land is used and how food is produced: conserving and
restoring ecosystems, responding to the global climate, malnutrition, biodiversity and desertification crises. In short,
improving people’s lives.
The determinants of patterns of plant species composition on small mountains are poorly known, especially in Central Africa. We aimed here to identify variation in tree species composition throughout the Ngovayang Massif (southern Cameroon) and determine the relative contributions of environmental factors and spatial autocorrelation in shaping tree species composition. Vegetation surveys were conducted in fifteen 1-ha (100 m × 100 m) permanent plots established along a transect from lowland (200 m) to submontane forests (900 m) in which all trees with a diameter (dbh) = 10 cm were inventoried. Data were investigated using ordination methods (Correspondence Analysis and Canonical Correspondence Analysis). At the local scale, the most important variable in determining tree species composition patterns was slope exposure, followed by distance from the ocean and altitude. Together, these environmental variables explained 28% of floristic variation among plots, and the spatial structure almost disappeared when the effects of these variables were removed. Spatial autocorrelation analysis showed that spatial variables (geographic coordinates of the plots) or geographic distance between plots explained only 1% of the total initial variance. Residual spatial variation not explained by the environmental variables probably reflects the history of vegetation and the effects of other climatic variables that were not included in this study. Floristic variation in the Ngovayang Massif is due to strong environmental heterogeneity. The sensitivity of floristic composition to environmental variables such as slope orientation and altitude suggests that tree species composition may shift with expected climate changes, such as changes in the movement of air masses, increase in mean annual temperatures or increasing severity of the dry season. Our study highlights the need for systematic on-the-ground measurements of climate variables in tropical montane areas in order to better understand the current climate regime and serve as a basis for modelling future changes.